Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations
نویسندگان
چکیده
There are three important steps in the computational modelling of any physical process: (i) problem definition, (ii) mathematical model, and (iii) computer simulation. The first natural step is to define an idealization of our problem of interest in terms of a set of relevant quantities which we would like to measure. In defining this idealization we expect to obtain a well-posed problem, this is one that has a unique solution for a given set of parameters. It might not always be possible to guarantee the fidelity of the idealization since, in some instances, the physical process is not totally understood. An example is the complex environment within a nuclear reactor where obtaining measurements is difficult. The second step of the modeling process is to represent our idealization of the physical reality by a mathematical model: the governing equations of the problem. These are available for many physical phenomena. For example, in fluid dynamics the Navier–Stokes equations are considered to be an accurate representation of the fluid motion. Analogously, the equations of elasticity in structural mechanics govern the deformation of a solid object due to applied external forces. These are complex general equations that are very difficult to solve both analytically and computationally. Therefore, we need to introduce simplifying assumptions to reduce the complexity of the mathematical model and make it amenable to either exact or numerical solution. For example, the irrotational (without vorticity) flow of an incompressible fluid is accurately represented by the Navier–Stokes equations but, if the effects of fluid viscosity are small, then Laplace’s equation of potential flow is a far more efficient description of the problem.
منابع مشابه
A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملDynamic Simulation and Control of a Continuous Bioreactor Based on Cell Population Balance Model
Saccharomyces cerevisiae (baker’s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance equation (PBE) can be used to capture the dynamic behavior of such cultures. In this work, an unstructured-segregated model is used f...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کامل